MAHONE BAY UNEARTHED

HERE SHE IS:

AND HERE ARE WE:
ON THE MAP, ABOVE, HERE ARE THE SHAFTS
A: Mader’s Cove B: Martin’s River C: Oak Island

AND HERE ARE SOME NOTABLE FEATURES near Shaft A:
1. A recently-drilled domestic well, driven through about 200 feet of clay before water was found. Quite near the bottom the drill went through a 10-inch layer of palygorskite clay.
2. Great Ridge (with much clay, and extending to Westhaver’s Beach).
3. The actual Mader’s Cove, after which the peninsula is named: the cove could be a sink-hole.

If you don’t know much about the Gulf Stream, which probably led to the Mayas and Aztecs coming up this way, this is a drawing by Timothy Folger, which was published by his cousin, Benjamin Franklin, in 1769:

This is a link to some of the Gulf Stream’s history:
http://www.nha.org/history/hn/HN-v44n2-gulfstream.htm

From the above link:
"Following a varied and generally successful career in the colonies, Franklin went to England in 1754 and was there off and on for twenty years, representing the colonies of Pennsylvania, Georgia, New Jersey, and Massachusetts in various capacities at various times. One of the positions he held while in England was deputy postmaster general and later postmaster general for the American colonies."

And from the Canada Post website:
"The first official Post Office, in what is now Canada, was opened in Halifax in December 1755. Benjamin Franklin, printer in Philadelphia, and William Hunter, the Deputy Postmasters General for the British Colonies in North America, were in charge."

On 31 January 1774, Benjamin Franklin was dismissed as Deputy Postmaster General because of his writings and other activities associated with the American Revolution.

NOW:
Anyone who has given much attention to all the Oak Island exploring and conjecturing that has gone on for the past 221 years, could find this troubling. Nonetheless, a deep-enough dig probably can reveal firm evidence of the Maya-aztec mining of palygorskite clay which John O’Brien posits in his book, *Oak Island Unearthed*.

Some words from the author of the book:

The following essay/treatise by Jack Sorenson (PhD), links his own research with my book’s argument that on eastern Oak Island there was early mining for palygorskite clay by people from the Maya and Aztec civilizations. His having discovered evidence of two other such mining-shaft operations in close proximity with Oak Island, expands the picture greatly. And his research into the cataclysmic 535-536 AD volcanic eruption in El Salvador, as well as his discovering evidence that merchant-barons in the Yucatan region came to be travelling in sixty-foot viking-like “long-boats” (think Mahone Bay), opens our minds to be searching for the larger historical picture.

You may be surprised by the way things fit together in the following pages. And you may be pleased--as am I--with how much his essay and my book enhance and link with each other.

John O. O’Brien

Well, on with our own unearthing of things

Oak-Island-ish...
The deeper one goes into the extensive labyrinth of stories and histories having to do with the destruction of the ancient Egyptian libraries of Alexandria, the more puzzling and open to argument and disagreement it has become. Events in Egypt from 47 BC to 642 AD – about 700 years - generated conjectures that are still being mulled today.

The same sort of manifestation is linked with the multiple efforts, conjectures, and hypotheses associated with Oak Island’s extensive labyrinth of passages and secret chambers. On that one island in Mahone Bay, Nova Scotia, there have been at least 35 exploratory “digs” and searches since 1795. While many people have been struggling to discover whatever is down there, they have dug and drilled their way to greater and greater bafflement and perplexity. **The Oak Island “Mystery” is a giant, enigmatic and seemingly intractable, MESS. To make things worse: its time-line might stretch from as early as before 800 AD.**

It is important to mull how it is that coconut fibre dating from about 800 AD has been found at Oak Island. From then to now is about 1200 years--a period that has been capped by about 220 years of increasing and unceasing argument. We in Nova Scotia are in the big leagues.

Scores of books--many of them well written and satisfyingly illustrated, have presented conjectures about Oak Island. **Several of those are clever, and even alluring; but they remain only parts of the lore. History? Not so much.**

A major point about libraries: After the Spanish took control of Mexico and the Yucatan peninsula in the early fifteen hundreds, it was not long before the Catholic bishop, Diego de Landa, caused the destruction of about 3000 books and manuscripts of the Maya-Aztec civilization. The absence of that collection may have allowed for our modern sense that only after the Spanish showed up in this hemisphere-- that is, after 1492--could anyone have been coming up from the Gulf of Mexico to Oak Island.

It is well established that in what is now the U.S. state of Georgia, Maya and Aztec commercial groups had been going up from what is now Mexico and the Yucatan, and mining for both gold and clay--the most valuable type of clay being *attapulgite/palygorskite*. In 535-536 AD there was a cataclysmic volcanic eruption in what is now El Salvador. The effects of that massive outburst were felt around the world (more about this, later), and in the immediate area of the Gulf of Mexico there was tremendous social, political, and financial shifting and disruption. In addition to a huge number of injuries and fatalities, there was much moving, around and beyond. For the Maya there was much rebuilding and firming things up. **Had that anything to do with commercial prospecting and mining having occurred in Mahone Bay?**

By about 900 the Mayan empire shattered, and Aztec dominance emerged. Commercial interests may have been stimulated, rather than discouraged, by the changes. Certainly, moderating climate and weather stimulated exploration and longer-distant travel. **After all, even the Vikings were on the move!**

To sum up our purpose:

Here, we will be strongly supporting the premise that Maya and Aztec merchant-barons had learned, or themselves had discovered, that 'way up the Gulf Stream were islands and peninsulas whose coast-lines shouted “clay is here, and lots of it.” Essentially, glacial till--that which has been pushed and deposited by glaciers-- predominates in much of the immediate area. **This can be grasped by looking at the above map, and scanning from the Lunenburg peninsula up to Chester.** Almost everywhere in this area, the ground above bedrock--the “overburden”--is dominated by layered reddish and dark-brown soils that are comprised of various percentages of clay. And the more clay-dominated the soil, the more impervious it is to water.

Although at Martin’s River (the location of our **Shaft B** the sea level is at least 12-feet/3.7-meters higher than in 800 AD, a modern-day wader along the shore can find herself slogging through
creamy-coloured palygorskite. This firmly suggests that Maya merchant ships could have found visible evidence of palygorskite in that cliff wall. It also suggests that, if the deposit of palygorskite seemed to be thick enough, tunnel-mining was a natural thing to do. That must have happened, because at the top of the hill above the Martin's River Silver-Point Road, there is a depression in the ground—a larger twin to what was seen by the young men who found such a condition at Oak Island (our Shaft C) in 1795. Shortly, a small group of friends will be examining that marshy depression at Silver-Point road, and will (or will not) have proved that the Silver-Point shaft is a twin of that hill-top shaft at Oak Island.

It is impossible to imagine what sort of geological wisdom the Mayan merchant class of around 800 AD had acquired, but here is something to ponder: could those people have imagined that the nearer to the surface was the bedrock, the thinner would be the layers of clay? Therefore, if they had seen palygorskite at Martin's River, but could not see it at Oak Island, could they have imagined that at Oak Island the bedrock must be lower, and the palygorskite layer must be lower; therefore the palygorskite deposit(s) must be much thicker and even more mineable than at Shaft B? However it came to happen, on Oak Island, by around 800 AD, an exploratory mining shaft had been dug down, about fifty feet from the south shore. This shaft was discovered—now below sea level—in the 1960’s. This shaft is connected, by out-mined tunnelling in the palygorskite deposits, to the taller ventilation (“treasure”) shaft that we all are aware of.

And please note: “Oak Island” is the eastern of two islands. In the early twentieth century, its bedrock—associated with the Windsor group—is about 145-feet/44-meters feet below sea level. In contrast, the bedrock of the larger western island—associated with the Halifax group—is about 35-feet/10.5-meters below sea level. That difference accounts for both the much thicker lower-level palygorskite layers at Oak Island East, and the major many-years effort to mine there.

But what about the Vikings? They were here, weren't they? The “handle” (that is, the “peninsula”), with meadows.

We have no trouble imagining that in the eleventh century the Vikings—in their long-boats—might have made their way down to Nova Scotia’s Western Shore, from L’anse aux Meadows in Newfoundland. Because they named that territory Vinland, and because they couldn’t find grapes (for wine) that far north, it is easy to think that they must have travelled further south to find the fruit for their tables’ treasure. This brings us back into lore-lore-land. And the following two paragraphs clear things up:

The Viking site at L’Anse aux Meadows, that is, “the “handle” (peninsula) with meadows, is located on the northernmost tip of the Northern Peninsula of Newfoundland. It was discovered in 1960 by the Norwegian writer and explorer Helge Ingstad. Excavations began in 1961 under the direction of Ingstad’s wife, Anne Stine Ingstad, a professional archaeologist, and continued until 1968. At that point eight buildings and some of the areas outside them had been excavated. The architecture, the construction material, and a handful of artifacts in the buildings indicated that they had been built in an Icelandic-early Greenland style and dated to the 11th century.

Helge Ingstad was convinced that what he had found was Vinland. Others were not so sure. They thought it was too far north to be the paradise that was Vinland. Grapes had certainly never grown there. Ingstad countered with the suggestion that vin in “Vinland” meant ‘pasture’ or ‘meadow,’ not ‘wine.’

The French got it right, when they named it L’Anse aux Meadows. The source:
http://www.canadianmysteries.ca/sites/vinland/lanseauxmeadows/indexen.html

To close off on Vikings: there seems to be little evidence that they made their way down to Mahone Bay in their long-boats.

But what about the mahone, the long-boat?

How would the Maya/Aztecs have gotten up here?
Setting aside the Vikings, it is thought that the French-derived word *mahonne* referred to long, low boats used by pirates (and/or privateers) who were known to have frequented the area. Some sources identify the mahonne/mahone as a barge-like boat, but a more appropriate label might be “bark” or “barque” or “galley.”

Primarily in the Mediterranean, a *mahomme, maonne, mahonne, maunah, maona, mahona* (various languages, various spellings) was (as described in Webster’s Third International Dictionary) “a short crescent-shaped seagoing ship of classical antiquity propelled chiefly by oars though generally having a mast carrying an oblong sail.” It falls under the term, “galley.”

Later, and “throughout medieval times, especially in the Mediterranean,” a similarly-named galley was “a large low usually one-decked ship propelled by both sails and oars, typically being 100 to 200 feet long, often having 20 oars on each side, with many rowers for each oar, 2 or 3 masts rigged with lateen sails, guns at prow and stern, and a complement of 1000 to 1200 men, and used...especially in the Mediterranean for war, trading, ceremonial, and pleasure purposes.”

In more recent times (and perhaps in our own *Mahone Bay*) a galley was “a large open rowing boat formerly used in England by customs officers, or press-gangs, by captains of warships, and as a river pleasure boat.”

Indeed, rather than barge-like boats, the pirates and privateers likely were using small, often two-masted sailing-ships, which had normal main decks as well as lower decks for rowing. That configuration gave them considerable fleetness and speed when they were accosting the great big sailing clunkers that were carrying valuable cargo across oceans.

“Pirates” were essentially seafaring criminal mobs. “Privateers” were essentially naval squads dedicated to stealing from enemy ships. The following Wikipedia articles can give you a good sense for both pirates and privateers:

https://en.wikipedia.org/wiki/Privateer
https://en.wikipedia.org/wiki/Piracy

The following statements from an examiner.com article, “The Mesoamerican connection: the Putun Maya, master seafarers and merchants,” can give you a good sense for the Putun Maya and their long-boats:

“During the period when the Maya Civilization was at its highest fluorescence (400 BC-900 AD) the true Mayas considered the Yokat'an to be illiterate barbarians. ... However, the Yokot'an's close association with both the Gulf of Mexico and inland riverine systems caused them to become increasingly skilled seamen. As the centuries wore on, they came to dominate the coastal trade between the Mexican Highland civilizations and the Maya. This eventually led to them becoming the predominant merchants for all of Mesoamerica. The Yokot'an, who traveled throughout the region and absorbed the advanced cultures of their customers, became known as the *Putan Maya.*”

“The demand for prestige goods and slaves stimulated the wealthy Putan to develop their boat-building skills. They learned how to build boats from wooden planks, that were much more efficient freight haulers than either dug-out canoes or slave caravans. Eventually, they developed a craft that was about the same size and construction as the famous Viking longboat. The Chontal sea craft usually were about sixty feet long, used rudders for steering, contained a cabin for ship's officers and were propelled both by oarsmen and one or more sails. These were true ocean-going boats. They would have had no trouble navigating the Gulf of Mexico or the Caribbean Sea.”

To the above, we can add: they also would have had no trouble navigating the Gulf Stream going up the Atlantic Coast to Nova Scotia.

It might be that the French word *Mahonne* emerged through Mi'kmaq (our native Indian) lore. After all, intermittently and over several centuries, when our natives came out to the river estuaries of "the bay" to fish, after having wintered inland to hunt, they would have been witness to people coming and going in long-boats, appearing to be living underground, and leaving the coast at about the same time...
of year that they themselves packed up and went inland. **How lucky our natives were, that those come-from-aways did not attempt (a) to conquer our natives and their territory, or (b) to capture and enslave their healthy men.** The total focus of those merchants from the deep south, seemed to be on mining palygorskite clay and transporting it back to their Gulf-of-Mexico customers. And they brought their own slaves to do it.

If, indeed, the Maya and related peoples were travelling up here for several centuries, the Mi'kmaq language might have absorbed some hints of it. For a number of years, a daughter of a good friend of mine has been a linguistics student at Princeton, as well as a teacher, researcher, and writer. She has done a study of evidence of the Maya language in (I think) Martinique. I'll soon be asking her some questions. ... If any readers have anything to offer about this matter, please use my e-mail address, to be found near the end of this article. For a taste of the Mi'kmaq language, try :

http://www.native-languages.org/mikmaq.htm#language

Incidentally, after French dominion in North America was ended in 1754 by the Anglo-French war, England began to reduce the French Acadian population. They forced many of them out. The key to growing the non-French population was to lay out maps indicating significant lots that could be had for farming, and then facilitate transportation across the Atlantic for various other peoples. Not only the English, Irish, and Scots came, which is obvious when one finds so much Germanic heritage in Lunenburg County, where Mahone Bay is located.

A somewhat amusing attempt to Anglify the area, appeared in a 1776 map showing “Kings Bay” (Mahone Bay), with “Gloucester Isle” (Oak Island), and it’s neighbour “Adolphus Isle” (Frog Island), in an area labelled “Royal Sound.”

If when mining for clay in Georgia, they also mined for gold, why didn't they look for gold up here?

We “locals” know that very near Oak Island is a river that comes from the inland to the ocean, and where pre-columbian natives fished. **Members of the Mi’kmaq First Nation Community still dwell there.** They even have a popular casino there. **That river is “Gold River,” so-named because a lot of gold has been found and mined in the region.**

Those readers who are at all curious about the Mi’kmaq might want to explore the following website:

In various areas of what is now the state of Georgia, the Maya had been mining both clay and gold from about 250 AD. There is strong evidence that the Maya were in the south-east corner of Georgia, where they (that is, their slaves under their “guidance”) surface-dug for gold and for the palygorskite clay known in Georgia as **attapulgite** .

You can look on a map for the Chattahoochee River, which runs along the north-south border of Georgia and down to the coast of the Gulf of Mexico. *It's a sort of mini Mississippi*. **Here is a quick look at some evidence of the Maya having been deeply engaged in Georgia:**

https://en.wikipedia.org/wiki/Palygorskite

To confirm in your mind the importance and the range of sea travel in the Maya-Aztec world, the following map suggests the shipping routes of the Totonac people, who--between about 900 and 1200 AD--were almost as important as, and competitors with, the Aztecs. They colonized areas up both the Mississippi and Chattahoochee Rivers, as evidenced by the remains of pyramid-like mounds. Their primary city was in the region now known as Vera Cruz. **Please note the arrow suggesting travel along the Atlantic Ocean. Gulf Stream, anyone?**
Before 800 AD (according to carbon dating of the coconut fibre that was found in the primary mining shaft at Oak Island), when the exploring Maya merchants discovered the Mahone Bay clay beds and their potential for mining remarkable amounts of blue palygorskite, mining clay was the only reason to be up here. There was no reason to move up here. There were good reasons to not be here in the winter. Gold? There was plenty down south. Palygorskite? There was nothing down south that could match those very thick veins of palygorskite that were down near bedrock on Oak Island East.

Below, is a modern Google Map of the Gulf of Mexico, which can confirm in your mind the possible breadth of the Maya-Aztec world. That the map is not larger, should not suggest that they may not have gone up and beyond the west coast of Mexico, or up the Gulf Stream to the coast of Nova Scotia.
Please note the red mark showing in El Salvador.

Below is a recent photograph of that reddish area in El Salvador, where there is convincing evidence of the massively significant 535-536 AD volcanic eruption. That catastrophic event, the Tierra Blanca Joven (TBJ) eruption, produced the Ilopango caldera (filled by a crater lake), and was much, much bigger than the more recent eruptions of Krakatoa and Penatubo. A suburb of the modern capitol, San Salvador, can be seen at the lower left corner:
Until a few years ago it had been presumed that the extreme weather events of 535-536 AD and ten years after, were most likely linked to a volcanic eruption of Krakatoa in Indonesia, but no good evidence of that has been found. Rather, it recently emerged that the more likely cause was the Tierra Blanca Joven (TBJ) eruption of the Ilopango caldera in central El Salvador. It now is accepted that the TBJ eruption was the decisive factor that resulted in the first medieval “dark ages.” From Eurasia Review: “It produced enough volcanic ash to form a 15 centi- metre/6 inch layer across the entire UK. This catastrophic eruption destroyed practically everything within a 100 kilometre radius, including a well-developed native Mayan population, and significantly disturbed the Mayan populations as far as 200 kilometres away.”

Ancient chroniclers recorded a disaster in that year that produced a “dust veil” that blotted out the Sun for two or three years, causing world-wide famine, droughts, floods, storms and an epidemic of bubonic plague. It has been posited that associated climatic anomalies led to the disintegration of the Byzantine Empire, as well as to the 6th-century collapse of Arabian civilization which, under pressure from floods and crop failure, developed the religiously apocalyptic atmosphere from which Islam emerged. In Mexico, the cataclysm probably triggered the collapse of Teotihuacán. Many other historical events might have ensued from the TBJ eruption.

From Wikipedia:
“The Plague of Justinian (541–542) was a pandemic that afflicted the Eastern Roman (Byzantine) Empire, especially its capital Constantinople, the Sassanid Empire, and port cities around the entire Mediterranean Sea. One of the greatest plagues in history, this devastating pandemic resulted in the deaths of an estimated 25 million (initial outbreak that was at least 13% of the world’s population) to 50 million (two centuries of recurrence) people. Recent investigations relate this severe plague epidemic to the extreme weather events of 536, which is an example of volcanic winter.”

There can be little doubt that the TBJ eruption of the Ilopango caldera in central El Salvador, spewed huge amounts of magma and dust that covered and disrupted much of the Maya territory. Apart from the deaths at the time of the cataclysm, food supplies were drastically affected. And turmoil ensued: the major monuments in the city of Teotihuacan (near the modern Mexico) were sacked and systematically burned around 550 AD. Maybe even local mining was
difficult. But certainly there ensued a long period of dislocation, with financial and political confusion, all of which led to some searching for new sources of valuable commodities.

Incidentally, it has been discovered that from about 600 to 900 AD, Maya potters fused volcanic ash with local clay, to make their ceramics easier to fire.

It could have been that cataclysmic MESS that led to our Oak Island Conundrum, and to which we now return...

There is no reason to think that it was the Mayan rulers who sent the merchant-barons on their for-profit trips up to Georgia. It must have been a few powerful and shrewd businessmen who explored and discovered—then conquered and enslaved—the Georgia natives, and then sought out the gold and the very special attapulgite/palygorskite clay, which they extracted and took away home for profit.

Neither is there any reason to imagine that only one business group was exploring up north in Nova Scotia’s Mahone Bay. Indeed, because there were at least three clay-mining shafts in the Mahone Bay region, it could be imagined that a consortium of three different Mayan business groups came up here at the same time, or that one business group investigated in different seasons at Mader’s Cove, Martin’s River, and Oak Island.

TO CONFIRM: Yes, THERE ARE AT LEAST THREE ancient and deep top-of-hill clay-mining ventilation shafts in the Mahone Bay region. And, as will be discussed further on, each of those tall shafts is associated with a shorter and primary exploratory shaft, lower and near-to-shore.

Did John O’Brien know about those two other top-of-hill “ventilation” shafts when he wrote his Oak Island book? He did not, but a friend of mine, John Donaldson, did.

What follows is an exposition of how this knowledge developed.

HERE GOES...

The author of *Oak Island Unearthed*, John O. O’Brien, has been able to go beyond mere conjecture because he is a very experienced former miner. Much of my interest in his book comes from my having been a child of a geologist mother and a geologist-mining-engineer father. I was born in 1937 in the Coeur d’Alene mining district in the Bitterroot Mountains of north Idaho, and I grew up in Wallace. The main minerals were silver, lead, and zinc. During my 18 years there, my father was the head geologist and engineer for Hecla Mining Company. In the summers I went with my parents as they were prospecting for other potential properties that the company could acquire. One of my teen-age summers, I laboured in a mine’s rock-crushing and concentration plant. But most important to me was going down into working mines and seeing all that goes on.

Some of what I saw was truly stunning—such as when I was peering down a shaft about a mile deep. Also stunning was the horizontal and vertical labyrinth of tunnels, raises, stopes. And almost overwhelming was what was going on at the “face” where the miners were drilling, and implanting dynamite that would be set off at the end of their shift. My dad’s most important job was to go down at the beginning of the next shift in order to guide that new day’s work. (Not incidentally, he died of pulmonary emphysema at age 67.)

I gained much respect for the guys who were working in those hugely complex mines. It is with this sort of respect that I encountered the former long-time hard-rock miner, O’Brien, now retired and living about ten blocks away from me in Bridgewater, Nova Scotia. (Bridgewater is about 30
kilometers/18.5 miles from Oak Island.)

By the way: most of the underground maps that my father drew, were on lacquered linen. Every once-in-a-while he would bring home a map that was to be tossed out. Mom would soak, wash, and bleach it, and then cut and hem handkerchiefs. Not many people blow their noses on as much mining history as I do.

Welcome To Drumlinville

Geologically speaking, the Mahone Bay area of Nova Scotia is dominated by the Halifax Formation, which is underlain by slate and other hard rock. Less dominant is the Windsor Group, which is underlain by limestone and anhydrite (which, by the addition of water into its chemical structure, easily alters to the much more common mineral, gypsum). The Windsor group is found beneath some of the bay's shoreline, as well as beneath many of the bay's more than 300 islands.

Rock or soil overlying a mineral deposit, archaeological site, or other underground feature, is called “overburden.” Much of the overburden in our region, on both the Halifax Formation and the Windsor Group, is defined as glacial drumlins. “A drumlin is an elongate or oval hill of glacial drift, typically one of a group, (often) consisting of compacted boulder clay molded by past glacial action.” Anyone with an eye for clay, who is boating past these Mahone Bay shorelines and seeing the eroded shores of its many peninsulas, cliffs, and islands, would very frequently be tempted to pull in and have a closer look. The layering which can be seen in many places--with its variety of colours and textures--could intrigue seekers of rare clays such as creamy, grey, or blue palygorskite. The Maya prospectors probably knew, that if present, palygorskite would be found near the bottom of a clay bed--at or near bedrock.

Palygorskite was uniquely valued by the Maya culture. And it was probably merchant-barons, perhaps equivalent to modern-day “corporations,” who were aware of the low palygorskite clay reserves available on Yucatan and found their way up here. The fundamental premise at the root of O'Brien's argument is that on Oak Island the Mayans were mining for palygorskite clay.

Palygorskite was used by the Maya to create the pigment Maya Blue which was very important to their culture. They also were likely mining gold in the north Georgia mountains. It seems highly unlikely that all these correlations are coincidental.

The Hitchiti migration legend reference to their ancestors coming from “reeds" suggests they were Maya who left a major city in Mexico and then arrived on the coast of Florida and temporarily settled near Lake Okeechobee before heading upstream and settling in Georgia “for a permanency.” Interestingly, the Itza Maya referred to their ancestors as Ah Puh which translates as “Reed People.” Could the Hitchiti be descendants of the Itza Maya?

Two place names in Georgia suggest this is the case. According to researcher Richard Thornton in his book Itsapa: The Itza Maya in North America, several Native American towns in Georgia were named Itsate which in the Hitchiti language means “Itza People.” Another town was named Itsaye which in Cherokee means “Itsa Place.” Its Hitchiti name for this town would be Itsapa since the -pa suffix means "place" in that language. The very name Hitchiti is likely an Anglicized version of Itsati.

The preponderance of the evidence seems to indicate that the Itza Maya were the ancestors of the Hitchiti tribe. They arrived in Florida around 200 AD as indicated by the arrival of corn in Florida, Mayan words in the Hitchiti language, and Mayan glyphs on Swift Creek pottery. Massive earthen pyramids were also constructed at this time, such as the Crystal River Mounds and Letchworth Mounds in Florida, and the Kolomoki Mounds in Georgia, which is where much of this Swift Creek pottery has been found. The discovery of one of the largest sources of the mineral attapulgite (palygorskite) just a few miles from these sites provides one possible reason for the Maya presence in the area. Attapulgite was used by the Maya to create the pigment Maya Blue which was very important to their culture. They also were likely mining gold in the north Georgia mountains. It seems highly unlikely that all these correlations are coincidental.

From http://authenticmaya.com
The ancient Maya combined skills in organic chemistry and mineralogy to create an important
technology—the first permanent organic pigment. The unique colour and stability of Maya Blue, the most durable Maya colour, only recently has been reproduced. The Maya blue pigment is a composite of organic and inorganic constituents, primarily indigo dyes derived from the leaves of anil (Indigofera suffruticosa or Indigofera guatemalensis) plants combined with palygorskite (sepiolite), a natural clay, cooked at 100 degrees centigrade, that makes it turn from blackish to its exquisite tone. Smaller trace amounts of other mineral additives have also been identified. Due to its attractive turquoise colour and light fastness, Maya blue was widely used in mural paintings, sculptures, ceramics and codices.

The Olmec/Proto-Maya had the same sort of pochteca (traveling merchant) class as the later Aztec did and they were wide-ranging traveling businessmen.

We know the Maya were doing something similar in the American southwest at Chaco Canyon, New Mexico. Archaeologists have found southwestern turquoise in mosaics at Chichen Itza, and Mayan chocolate residue in drinking cups at Chaco Canyon. This is an overland distance of over 2,000 miles. By comparison, Florida is an overwater distance of only 450 miles. In addition, archaeologists have found Mayan jade at sites in the eastern Caribbean on the island of Antigua, which is an overwater distance of 1,700 miles. Clearly, reaching Florida would have been quite easy for the Poton Maya. In fact, the Gulf Loop Current flows north past the Yucatan and goes directly to Florida. Thus, even without sailing technology one could simply float on the currents and arrive in Florida.

Before taking this discussion back up north:

It is important to bring forward something that we probably don’t much think about. Namely, the fact that—although horses and their kin had been in the Americas from very early times—by about 8,000 years ago they became extinct and were not reintroduced until the 16th century, with the arrival of Cortez in Mexico.

That absence of horses and other draft animals, when added to the uneven terrains, kept people travelling by foot rather in wagons. It isn’t that the Maya and their successors hadn’t “invented” the wheel; it’s that they couldn’t use large wheels to help haul things. Rather, they seemed to have used wheels in children’s toys. Found in a few tombs, have been wood-carved dogs having four wheels supported by axels running through holes drilled in the front and rear legs. The toys would have been pulled by a string. Full-size wheels? None found. The following link explains the situation: http://ambergriscaye.com/museum/digit4.html

Nova Scotia sea levels, and all that...

Important to keep in mind: 1200 years ago, the Atlantic Ocean would have been at least 12 feet/3.65 meters lower than today, and Mahone Bay shorelines would have been significantly further out, perhaps as much as 50-feet/15.25-meters, to about 100-feet/30.5-meters, or more.

An obvious example of the erosion and rising sea, is to be found at Westhaver's Island, which is number 4 across from the Mader's Cove Clay-Shaft A on the map. In the 1750's, when the area was plotted for properties that could be acquired by immigrants, Westerhaver's Island was large enough to have had a small farm, as well as a lighthouse and a house for the light-keeper's family. Now, that island is about the size of a triple garage.
Westhaver's Light built 1882, burned 1887, and how it is now.

Today, the sea is about 50-feet deep between Westhaver's Island and the Mader's Cove peninsula shore. The distance between the two is now about 450 meters (a little more than a quarter of a mile). And the current 50-foot ocean depth at low tide, compared with notably lesser depths around islands to the north, suggests that about 800 AD the main flow from the head of Mahone Bay (where the town of that name is located) passed out to the ocean between Westhaver's and Mader's.

An introduction to SHAFT A, at Mader's Cove

Today, one can walk the Mader's Cove shore and examine the clay in its eroded cliff. This is very significant, because in 1949, on private property at that shore, there was exploration of a surface depression that was somewhat marshy. It was on a recently-purchased property adjacent to another recently-purchased property. The mutual property-line ran along the edge of that depression, so the new owners decided to dig a mutual well. At about two feet down they struck a layer of flat stones. When they took those away, they were looking at a refilled shaft, about 10-feet/3-meters in diameter, which, in their minds, was quietly singing “Oak Island, Oak Island.” They formed a company to undertake the removal of the fill, with the plan that the shareholders would share whatever treasure was found. At the same time, they marked off and registered a small lot as company property.

The two initiators each owned twenty-five percent of shares. Several other people bought shares, and soon the digging was going along at a good pace.

Without being able to imagine that what they were seeing was evidence of a ventilation shaft associated with a primary mining shaft that by 1949 had been long submerged by the sea beyond the cliff they were on, they pushed forward. They dug down to about ninety feet without having experienced any significant moisture (because it was clay overburden), or any colour except various shades of brown. In 1949 the shoreline was quite close—much much closer than it would have been around 800. Also, sea level was at least twelve feet higher. Therefore, when at that depth one of the workmen pulled a sizable stone out of the clay wall, sea water came rushing in. While running pumps, they were able keep digging to about 96-feet/29.3-meters. At that point they drove a long iron rod down, and determined that the fill went to at least about 110-feet/33.5-meters. Given their fatigue and their massive pumping problem, their next work was to refill that damned hole and just try to forget about it. More about this “Shaft A,” a bit later.

Before Going On, Let’s Go Back, Far Far Back, to the Eocene

The following is a paragraph from the Encyclopedia Britannica:

Tertiary Period, interval of *geologic time* lasting from approximately 66 million to 2.6 million years ago. ... The Tertiary has five principal subdivisions, called epochs, which from oldest to youngest are the **Paleocene** (66 million to 55.8 million years ago), **Eocene** (55.8 million to 33.9 million years ago), **Oligocene** (33.9 million to 23 million years ago), **Miocene** (23 million to 5.3 million years ago), and **Pliocene** (5.3 million to 2.6 million years ago).
“Eocene” relates to, or denotes, the second epoch of the Tertiary Period, between the Paleocene and Oligocene epochs. The Eocene lasted from 56.5 million to 35.4 million years ago. It was a time of rising temperatures, and there was an abundance of mammals, including the first horses, bats, and whales. Yes, the Eocene was a few million years after the ca. 65,000,000 years-ago collision with a giant asteroid or comet, off the coast of the Yucatan Peninsula. You might find it interesting to read an article in Wikipedia: https://en.wikipedia.org/wiki/Cretaceous

If you want to take in the LARGE historical picture of the formation and moving of the earth's continents, so as to see where Nova Scotia came from, try: https://en.wikipedia.org/wiki/Pangaea

And if you feel sort-of-scientific, you might find it interesting to read the following three snippets about studies dealing with the mining of Palygorskite:

CLAY MINERALS OF THE GREEN RIVER FORMATION (EOCENE) OF WYOMING
R.W. Tank, Lawrence University, Appleton Wisconsin (1971)
Four groups of clay minerals--Uite, smectite, palygorskite and chlorite--are present in green variable amounts in the Green River Formation. Individual crystals vary from pure, well-ordered structures to poorly crystallized forms. Random mixed-layering is also common.

MINERALOGY OF PALYGORSKITE DEPOSITS NEAR OCHLOCKNEE, GEORGIA, NORTHEASTERN THOMAS COUNTY
David C. Clark, Department of Physics, Astronomy, Geosciences, and Engineering Studies. Faculty Sponsor: Dr. Mark S. Groszos, Department of Physics, Astronomy, Geosciences, and Engineering Studies.
Palygorskite, sometimes referred to as “fuller's earth,” is a fibrous clay of sedimentary origin that is widely used in industry as a filtering agent and as an absorbent. Palygorskite is heavily mined along a trend extending from Meigs, Georgia, to Quincy Florida. A local variety known as attapulgite is formed from a mixture of palygorskite, smectite and montmorillonite clays. The palygorskite occurs in the Meigs Member of the Coosawhatchie Formation of the Miocene Hawthorne Group. These clay deposits occur in a poorly understood Miocene paleo-deposition feature known as the Suwannee Straits or Gulf Trough that served as an open seaway between Georgia and Florida from the Cretaceous to the Tertiary.

PALYGORSKITE IN THE EOCENE ROCKS OF THE DAMMAM DOME, SAUDI ARABIA
M. Namik Cagatay, King Fahd University of Petroleum and Minerals, KFUPM Box 895, Dhahran 31261, Saudi Arabia.
Palygorskite in the Early to Middle Eocene succession of the Dammam dome formed mainly in a coastal, schizohaline environment, under an arid to semiarid climate with humid intervals. It formed shortly after the deposition and contemporaneous dolomitization of the rocks and reached a maximum during a transgression in which the Khobar marls and carbonates were deposited during the Lutetian. Magnesium concentrations, in presence of dolomite was adequate for the palygorskite precipitation, with Silica and Aluminum supplied by the dissolution of silicates under alkaline conditions. The development of palygorskite in the schizohaline marginal basins in eastern Arabia during the Paleocene-Middle Eocene interval is contemporaneous with similar occurrences in the Tertiary basins of West Africa.

At this point, my Irish-heritage mother would tell me:
‘twill do....

To return to recent times:

You might be stunned to see a complete time-line of the Oak Island Dig. The following link will allow you to grasp the enormity of it all.
(The web site allows you to see the full range of events from 1795 to 2006, and the link brings you from 1960 to 1972. At the bottom of the page is an index to other periods, from 1641 to
2006. Also at the bottom of the page is a comment that payment will give you access to the whole file as a PDF.

http://worldtimelineinfo/oakisland/oak1960.htm

And, if you want to wallow in the whole mess, you can find comments from viewers of the recently-running TV series about Oak Island at https://disqus.com/home/discussion/oakislandmoneypit/oak_island_money_pit_the_last_great_unsolved_mystery/.

Here is one of the comments:

Cory Zasitko Robot • 2 years ago
I'm not disclaiming anything but before any of this can be explored the first thing that needs to be done is a formation of an explanation as to how if possible this place could have been constructed. I can find nothing resembling this from actual known historical evidence from around the earth. The other thing is without mechanical means you cannot control the flow of water. It always flows in the direction of least resistance unless there is some force behind it. I do find this curious but on this scale for this to be constructed by hand hundreds of years ago it would have required a force of hundreds if not thousands of people and then of course hundreds of thousands of more people cooking and caring for these people and procuring supplies. And what would they have done with all the material they unearthed while constructing and then of course it would take hundreds of years of growth to cover up any signs of the work. And most importantly what was done with all the timbers and bits of lose metal and such all that evidence must have been kept? To dig an open pit over 100 feet down, the original hole would have to be opened well over 200 feet wide in order to accomplish any such work.

I emboldened the last sentence in order to bring up a very important point: although we are used to reading and hearing about the Oak Island Money PIT: It is not a PIT. It is a SHAFT.

It is what I have labelled SHAFT C.

The above commenter touches on the problem of feeding so many people. Fish and game would have been easy to harvest. Also, most of those people would have been slaves: both the Maya and the Aztecs were slave societies. Slaves were often sacrificed. Sacrificed people were often cannibalized; upper arm and thigh muscles seemed to be the chosen meat. It could be that when the Oak Island slaves died or no longer were useful, parts of them—perhaps including more than the upper arms and thighs—showed up on the others’ dinner plates. This subject is touched upon in the following website:

The next site avoids the issue of cannibalism, but otherwise is a rich overview of Maya religion. http://www.historymuseum.ca/cmc/exhibitions/civil/maya/mmc03eng.shtml

And NOW: We Return to Our Main Argument

In many places in the world, for many peoples, and in most of history, “mining for clay” involves “open pit” digging. In contrast, to be “going underground” by tunnelling into a visibly thick vein in a cliff or mountainside, is more difficult because it requires the building of a great amount of interior wooden structural supports. Although, while mining in hard rock it often is not necessary to construct ceilings in tunnels, if you are tunnelling in clay you must keep lining the ceiling with planks.

In modern hard-rock mining, ventilation fans and conduits are absolutely essential because of depth (think 6000 feet!), multiple tunnelling, and the use of heavy drilling equipment and dynamite, both of which cause huge amounts of dust that must be continuously removed as fresh air is sent in. At Oak Island, about 1300 years ago, where shovels, picks, hammers, and chisels were the tools, the main ventilation issue was for the breathing of those toiling down there. Imagine that only about 20 percent of the air we breathe is oxygen that we absorb and use, and you can realize, (a) why it is that we can stay for a reasonable time in an enclosed space, and (b) why mechanical ventilation is not needed in relatively shallow mines where people are moving around and in and out. Also, imagine that something as simple as a bellows+tubes of some sort, could have contributed to keeping people alive and working down there.
Of course there are limits to so gentle a means of ventilation. The greater the number of workers, and the deeper they go, there can be a point when a number-two shaft—especially if it has a higher entrance than shaft number one—can help with both moving the air and with moving the product. One of the best ways to deal with the ventilation issue was to dig two shafts at a distance from one another, and mine between them. One shaft could be used for primary access, and the other could provide secondary access and serve as an air-drawing chimney.

Unless you find a vein or deposit which you can mine by tunnelling horizontally into a hillside, you have to dig a shaft. That allows you to go up and down inside the underground, the hill, or the mountain so that you can find a vein or deposit which you then can mine horizontally. To put it simply: shafts allow you to get down to what you want to mine. And, without modern engines and motors, two shafts—one at each end of the mine—allow for clearing the air and workers to breath. On Oak Island, the taller of the two shafts was discovered in 1795. But the shorter shaft was not discovered until 1965. It is down by the shore, and in around 800 AD, would have been nearly 100-feet/30.5-meters inland. There is no reason to believe that the shorter shaft was not the first one to have been dug.

Oak Island is an anomaly, for it actually comprises two quite different islands that almost appear to have bumped into each other. The most famous of these—the eastern one—is of the Windsor group. Its limestone and anhydrite bedrock is down at about 172 feet/52.5 meters from the surface of the “money shaft.” And its overburden includes three significant layers of grey palygorskite clay, starting at about 108 feet/33 meters below the surface. It is this very large amount of mineable highly-valued clay that kept Maya merchant-barons and their slaves coming up the Gulf Stream in their long-boats.

Of great importance at eastern Oak Island: during the several centuries the Maya/Aztec mining was going on, the dense clay completely protected the limestone bedrock from any erosion. Because sea water could not seep through to the limestone, there were no naturally-collapsed caverns—called “cenotes”—down there.

Even though sea water came into the main shaft in the early 1800’s, when it was triggered by their breaking through at the 90-foot/27.5 meter level, something kept the water from going down into the workings of the mine below. But in 1860, when money pit explorers put down shaft #6, 18-feet/5.5-meters west of the main shaft, they started a horizontal tunnel toward that main shaft. With about a foot left to go, water and mud rushed in. At the same time there was a major structural collapse, and all the empty mined-out areas down to the bedrock, also filled. It would not have been long after the triggered-flow, before the bedrock's limestone and anhydrite began breaking down.

Several years ago, on the adjacent mainland near the Atlantica Oak Island Resort (formerly the “Long Boat Inn”), where there is very little overburden, a large 52-foot/16-meter-deep cenote or sink-hole was accidentally opened by heavy excavating machinery that broke through a layer of surface rock. That dangerous cavern, caused by the eroding of limestone, was subsequently sealed/filled with a huge amount of concrete—which itself is made from limestone. Some information about cenotes:

https://en.wikipedia.org/wiki/Limestone

Had the Mayas seen it, they would have recognized the mainland cenote for what it is. The somewhat odd location of their remarkable city, Chichen Itza, appears to have been chosen because of two nearby cenotes that were sources for their water.

Now to the book, Oak Island Unearthed

The following is printed on the back cover of John O'Brien's book, Oak Island Unearthed! a miner's investigation into the enigma of Oak Island, the Mesoamericans, and the treasures buried therein:

John O'Brien first learned about Oak Island in 1958 at the age of twelve, listening intently as his pharmacist father and a Saint Mary's University professor debated, for an entire winter, the merits of existing theories of Oak Island and the mysterious lost treasures of the world.
After fifty-five years of research and puzzling over this mystery, many visits to the island, tens of thousands of miles traveled, and thirty-six years working underground, as well as countless books devoured about Oak Island, other famous world mysteries and the Mesoamericans, O'Brien had much of the puzzle in hand. However, two issues remained. Although he had always known there was an ancient mine on the island, it took an episode on the History Channel to present the final clues as to what was being mined and where; followed by a recent and significant breakthrough in archeological research.

The latter finally linked 'ritual mathematics' with Oak Island measurements; which combined with the scientific findings (e.g. carbon dating, drill core samples, geology) which, for the most part had been ignored, and 1000 years of history, cemented the conclusions found in this publication. Oak Island, simply put, is an underground operation, and O'Brien's life-long career as an experienced miner in all capacities--within Nova Scotia and the far-flung corners of the planet--gave him a perspective that has eluded others in what is the world's longest 'treasure hunt'. Readers have even suggested this story is the true 'W-5 plus one' of Oak Island--the only theory with supporting evidence that answers the who, what, where, why and when, as well as how--in a unique and comprehensive way. You will be surprised; you may initially be shocked by some of the connections and conclusions, but the evidence speaks for itself, and the story-telling style of O'Brien, honed in the mining camps of Canada's far-north, will keep you informed and entertained as he solves this enduring mystery.

Gain a good sense of O'Brien's experience and thoughtful examination, by listening to the following interview, recorded in early 2016: http://mysterioustopics.com/john-o-o/

An Overview of Drumlinville, Nova Scotia

At the Oak Island contact point for the Halifax Formation and the Windsor Group, the bedrock of each is at remarkably different depths: about 30 feet of overburden for Halifax (the west island), and about 180 feet of overburden for Windsor (the east island--the one with the “money pit”). But whatever the depth of the bedrock, this part of Nova Scotia is lush with drumlins--those “rounded hills and peninsulas and islands of many shapes and sizes, deposited by the receding glaciers at end of the last ice age.” Those retreating glaciers also left a great number of large boulders all over the place. We call these “glacial erratics.” (Most of these, we take for granite. Hardy-har-har…)

Here a Shaft, There a Shaft...

I am writing this article because a year ago, after buying O'Brien's new book, my mind quickly linked with some of his thinking. My mining-town youth and my geology-trained parents were a large part of it. But a primary link was with my knowledge of there having been the discovery of an Oak-Island-type circular depression on a property in Mader's Cove, which has been introduced, above, as SHAFT A. There were a few articles about “the find.” And in 2000, a Skeptical Inquirer article by Joe Nickell, stated:

> Just such a pit was in fact discovered in 1949 on the shore of Mahone Bay, about five miles to the south of Oak Island, when workmen were digging a well. The particular site was chosen because the earth was rather soft there. Reports O'Connor: “At about two feet down a layer of fieldstone was struck. Then logs of spruce and oak were unearthed at irregular intervals, and some of the wood was charred. The immediate suspicion was that another Money Pit had been found.”

When writing his book, John O'Brien knew nothing of this find, which I have been calling SHAFT A; but he was eager to go with me to have a look at where that shaft through clay had been discovered. I knew the current owner of that property, and had visited there a few years ago. He he graciously allowed the two of us to come and see that refilled area, on his front lawn near the sea cliff.
A Stroke of Serendipity...

A few days after John O'Brien and I had gone to Mader's Cove to see the location of Shaft A, I encountered a long-time friend, John Donaldson, at the Bridgewater SuperStore. We traded greetings, and asked the usual “what have you been doing?” When I told him a bit about the O'Brien book, and mentioned our recent visit to the Mader's Cove property, he brightened quickly. He told me that in 1949 it was his father who owned that property, where he was planning to build a cottage. John also told me that, at the age of about ten, he himself witnessed a lot of the digging. He then said that quite a few wells in the vicinity (both dug and drilled) were in clay, and usually had showed little or no signs of water until the clay had been passed through. Therefore they expected to have to do a reasonable amount of digging.

Donaldson went on to tell me that when he was in his late teens, and thinking about being a farmer, his father had offered the Mader's Cove property to him as a gift. Because John already had his eye on a much larger, and already-working farm a few miles away, his father sold the Mader’s Cove property and passed John the money so he could pursue his dream.

Donaldson did begin farming there, and a significant part of his crops was hay. After a few years, a friend of his family, who lived on a peninsula at Martin's River--about half-way between Mader's Cove and Oak Island, asked John if he could bring his equipment and cut their hay. He went with his tractor, and quite soon noted that on that property on Silver Point Road, there was a larger and more swampy twin of the Mader's Cove depression he had known as a child. He hadn't been there since his hay-cutting discovery. But there in the SuperStore we agreed to go to Silver Point peninsula with the author, John O'Brien.

A few days later, the three of us were at Silver Point, at the top of a significant hill, and looking across a field toward a marshy depression. For a marshy depression to exist at the top of a significant hill is to elicit the thought that the soil beneath it is not permeable--rather, it is dense clay.

The depression was broader than Donaldson remembered, and--unlike what he had seen before--tall reeds were growing in it. When we came closer, something remarkable stood out: in the middle of this sort-of-round reedy depression, there was a circular area about eight-to-ten feet in diameter. It was densely covered with quite-short green ferns. From this information, even you can imagine that there might be a shaft in that clay, a shaft that has been refilled and then topped off with a layer of stones plus soil.

That, dear reader, is SHAFT B.

Not long after we had been above Silver Point Road at Martin's River, I visited an elderly female acquaintance who lives in the town of Mahone Bay, and has a summer property on Silver Point peninsula, not far from the property with the swampy depression. In the course of our chat about the area, she told me that she knew very well that there was clay there. Indeed, when she wants to go to the river for a quick summery swim, she chooses high tide: then she can slip in off her dock, swim a bit, and return to the dock. In contrast: going in at low tide requires that she wade out from the shore and then back--through a creamy-coloured and gooey clay. When she gets back to her cottage, it is hosing-off time.

Not long after speaking with that somewhat intrepid elder, I returned to the Martin's River side of the Silver Point peninsula to check out the shoreline. Sure enough, in several areas at the edge of the river's brownish waters, I saw creamy accents. Given that several hundred years ago the river-as-inlet would have been lower by at least a dozen feet, I had no trouble imagining that palygorskite searchers might have seen a vein of creamy palygorskite and been mining there. Because at this time there are quite a few docks, as well as big-bouldered reinforcements along the coast line, I realized that if there had been a tunnel associated with the purported shaft down from the depression on the top of the hill, any clear evidence of it is probably gone.

That same day, I decided to sneak along the back of that Silver Point property with the marshy
depression. After lining myself up with the depression, I then turned and made my way in the other
direction--down toward the Long Cove side of the Silver Point peninsula. I pushed my way through
bushes and trees, and as I was nearing the bottom of the hill I parted some bushes, expecting to see
the inner shore of Long Cove. I was stunned by what was right there: a water-filled pond, several
feet wide and about twice as long, with boulders laid around its edges. I assumed that it had been
dug out, as there was no associated subsidence that would suggest a sink-hole.

Considering, again, that the ocean could have been at least a dozen feet shallower at the time of any
of the apparent digging, I thought about that water-filled pond:
-- Given that the water level in the pond is several feet above the current high tide, unless it was
a “dig” in clay, it would not be retaining that water.
-- Given that, even though that “dig” is about 450 feet away from the purported shaft dug down
from the top of the hill, and even though John O’Brien contends that such a distance would
be too great for there to be mining between the two, I offer that the Long Cove “dig”--if
nothing else--might have been another exploratory tunnel or shaft.

Some time this fall (2016), a small group of people had hoped to be driving an iron bar down
through the “ferny” centre of that marshy depression on the top of that hill. Our expectation:
that we would soon encounter a layer of flat stones, as had been found at Oak Island (Shaft “C”)
and Mader’s Cove (Shaft “A”). Unfortunately, the owner of that property has firmly and legally
forbidden our access. Therefore, on this site we will not be posting any new information
about investigations at Silver Point SHAFT B.

TO PUT A CAP ON THE WHOLE THING...

While each of the three Mahone Bay shafts were in use, the crews probably prevented shaft
erosion by erecting roofs above “the digs.” And when the long-boats were being readied to
return south at the end of a mining season, the crews probably had built easily-removable and
water-proof caps over the tall ventilation shafts, as well as over the shorter original mining
shafts that were closer to the shore. But when they were done with a project and were not
going to use its shafts any more--as probably had been the case at Mader’s Cove and Martin’s
River—they apparently totally closed off “the underworld” by filling the shafts with dug-out
overburden, and then capped off the “now dead' access shafts with layers of flat stone and
then top-soil.

In contrast, consider the fact that in modern times, mining shafts that are being abandoned
are properly closed off so that no snoopers will be likely to fall to their deaths. But it is not
likely that an abandoned deep shaft would be refilled with tailings from the original dig,
before being closed off. For us now, the point is to keep people from falling in, rather than to
keep the underworld from spewing out.

This sort of closing-off-the-underworld “refill” work seems to have been done at Mader’s Cove
(Shaft “A”), where the 1949 treasure-seekers did not find “every-ten-feet” platforms such as had
been found at Oak Island. Rather, as they dug they were removing replaced fill that even
included scraps of wood. As well, this sort of “refill” work probably had been done at Martin’s
River/Silver Point Road (Shaft “B”). We probably can assume that the same refill work had been
done with all three of the shorter primary exploration shafts (Mader’s Cove, Martin’s River, and
East Oak Island), but rising waters have obscured all evidence.

The above observations are intended to nudge forward the following conclusion: when in 1520
the Aztecs were facing their immanent defeat and perhaps annihilation at the hands of
Cortez, important people knew that on East Oak Island (with its tall Shaft “C”) there was still
a working mine, which could serve as a ruse that could be turned into an absolutely
stultifying booby trap. They undoubtedly also knew that the bedrock of the adjacent West
Oak Island could serve their ultimate secret purpose, which was hiding the body of
Montezuma as well as his treasure. The combination may soon be revealed as a previous
culture’s truly remarkable and unique achievement. If and when that is announced, John
O’Brien’s Oak Island Unearthed can be acknowledged as a truly remarkable and unique
Given how many islands and peninsulas in Mahone Bay are CLAY DRUMLINS, there could be more than just three CAPPED-OFF MINING AND VENTILATION SHAFTS.

THEREFORE:
I invite anyone who knows about any similar somewhat circular depressions in Mahone Bay, to send me (Jack Sorenson) a message at jks@eastlink.ca.

BY NOW, YOU MAY BE READY TO EXPLORE JOHN O. O'BRIEN'S REMARKABLE BOOK ABOUT SHAFT C: OAK ISLAND UNEARTHED

To summarize John O. O'Brien's hypothesis:

A. His main point is that the palygorskite mine on the EAST island—a Maya/Aztec mine accessed by two shafts and dating from around 800 A.D. or earlier—probably had been productive over several centuries. After Cortez had pillaged the Aztec capitol of Tenochtitlan (near the modern Mexico City), in June of 1520, he and his armies were driven out. By the time Cortez returned, in August of 1521, a significant number of Aztecs had left in long-boats, and sailed/rowed up along the Gulf Stream to Oak Island. They brought with them, the body of Montezuma II, and what remained of his treasure. While here from 1521 to 1522, a large number of Aztecs and their slaves had turned the Oak Island workings from a mine into a very complex baited trap. It was a trap that would be triggered by anyone who might know, or come to learn about, the Oak Island mining history, and who would assume that it was to the East Oak Island mining works that the Aztecs had taken both Montezuma's body and treasure. “Booby trap” perhaps best names it.

B. In addition, O'Brien posits that, while one crew worked on the EAST island “diversion project,” another group of Aztecs and their slaves had dug two under-ground chambers in the bedrock of the WEST island. (Remember that the west island's bedrock is very much nearer the surface than the east island’s.) That cleverly disguised construction was something which enemies or other treasure seekers simply would not imagine could exist—especially in the shade of the tremendous “YOO-HOO, OVER HERE” coming from “the money pit.”

O'Brien's boldly-searching book deals with these matters, very richly and thoroughly.

Some final and important information:
It is generally known that on The History Channel, there is a TV series entitled The Curse of Oak Island. Presumably Season Four will start before the end of 2016. That series has been rambling around most of the “theories”/stories of what went on there, as well as most of “the digs,” old and new. Ah, how we like to be linked with one another through stories. If you have any doubt of this, consider how many of us reject the scientific evidence when it comes to the age of the universe, the distance light has been travelling to our eyes over those billions of years, and—shudder—that there may have been a big bang. As much as anything else, it is the perceived dryness of the scientific telling that gives a lot of people the shudders.

O'Brien's book came out in October of 2014. In the late summer of 2015 I bought a copy of it at a
small shop in Port Medway. A couple of months later, I learned that the author lived in Bridgewater, about ten blocks away from me. Therefore I went tapping on his door. **Our visit to Shaft A at Mader's Cove, and then Shaft B at Martin's River, ensued.**

In the late autumn of 2015, the producers of the TV program invited O'Brien to come to their Oak Island production workings, so that they could ask him important questions about his “theory.” They filmed a portion of that exchange, and edited it down so as to introduce “**A Theory about Aztec's doing the diggings to bury Aztec's valuables, beneath Nolan's cross.**” That segment was broadcast on Episode six of Season Three (2015-2016). Essentially, it was associated with Section B of the above summary of O'Brien's hypothesis.

In that program segment they gave no attention to the many remarkable things O'Brien had written about Mayan and Aztec history from around 250 AD, as well as about their having been mining for clay at Oak Island from before 800 AD and for quite a while thereafter. Nor did they touch upon (a) the Aztec's 1521-1522 massive remodelling of their centuries-earlier mining works into an amazingly ingenious and effective booby trap, or (b) the idea that, while one crew worked so elaborately on the EAST island, another crew was creating two under-ground chambers in the WEST island.

At this time—Labour-Day Weekend, 2016—O'Brien is looking toward some intense discussions with the TV production people, as they prepare for serious examination of his “mining-for-palygorskite-clay” hypothesis. While maintaining proper privacy, here on this site we will be trying to keep things up-to-date.

I imagine that anyone who has read all the way to the end of this presentation, can apprehend why I (and you) have gone to this trouble. The THREE CLAY-MINING-SHAFTS in Mahone Bay enlarge the picture enough, that the question, “WHO DONE IT?,” is probably settled. That is the reason I have worked on this presentation and made it available to you by way of this web-site.

Thank you for slogging through it with me. -- Goodbye

Here's a bonus for volcano freaks:

http://www.bibliotecapleyades.net/ciencia/ciencia_earthchanges90.html

And here's a site that teaches us about Maya Blue Palygorskite:

If you live in the area, you can find O'Brien's *Oak Island Unearthed* at Coles and Chapters-Indigo, as well as Halifax Pier 21, White Point Beach, Treasured Friends, SuperStore Smoke Shop, Port Medway Post Office and Grocery, and here and there.

You, or your favourite bookstore, can buy O'Brien's book, direct from the publisher:

or phone toll free: 1-877-211-3334

and from:

[amazon.ca Oak Island Unearthed](http://www.amazon.ca/Oak-Island-Unearthed/dp/1477920568)

[amazon.com Oak Island Unearthed](http://www.amazon.com/Oak-Island-Unearthed/dp/1477920568)

[chapters.indigo.ca Oak Island Unearthed](http://www.chapters.indigo.ca/Media/Media.aspx?pid=1477920568)